A new compressive imaging camera architecture using optical-domain compression
نویسندگان
چکیده
Compressive Sensing is an emerging field based on the revelation that a small number of linear projections of a compressible signal contain enough information for reconstruction and processing. It has many promising implications and enables the design of new kinds of Compressive Imaging systems and cameras. In this paper, we develop a new camera architecture that employs a digital micromirror array to perform optical calculations of linear projections of an image onto pseudorandom binary patterns. Its hallmarks include the ability to obtain an image with a single detection element while sampling the image fewer times than the number of pixels. Other attractive properties include its universality, robustness, scalability, progressivity, and computational asymmetry. The most intriguing feature of the system is that, since it relies on a single photon detector, it can be adapted to image at wavelengths that are currently impossible with conventional CCD and CMOS imagers.
منابع مشابه
From modeling to hardware: an experimental evaluation of image plane and Fourier plane coded compressive optical imaging
Computational imaging based on compressed sensing (CS) has shown potential for outperforming conventional techniques in many applications, but challenges arise when translating CS theory to practical imaging systems. Here we examine such challenges in two physical architectures under coherent and incoherent illumination. We describe hardware alignment protocols that can be used to optimize syst...
متن کاملToward Compressive Architecture for Image Acquisition in Optical Tomography: An Application of Compressed Sensing in Wavelet Compression of Fluorescence Tomography Data
Inspired by tenets of compressed sensing, we present and study a cost-effective compressive architecture for fast image acquisition in optical tomography that exploits wavelet compressibility of data. Theoretical results are validated by experimental studies. ©2012 Optical Society of America OCIS codes: (170.3880) Medical and biological imaging; (170.7050) Turbid media; (170.6960) Tomography
متن کاملLensless Compressive Imaging
We develop a lensless compressive imaging architecture, which consists of an aperture assembly and a single sensor, without using any lens. An anytime algorithm is proposed to reconstruct images from the compressive measurements; the algorithm produces a sequence of solutions that monotonically converge to the true signal (thus, anytime). The algorithm is developed based on the sparsity of loca...
متن کاملCompressive Imaging for Video Representation and Coding
Compressive Sensing is an emerging field based on the revelation that a small group of nonadaptive linear projections of a compressible signal contains enough information for reconstruction and processing. In this paper, we propose algorithms and hardware to support a new theory of Compressive Imaging. Our approach is based on a new digital image/video camera that directly acquires random proje...
متن کاملCompressive light field photography using overcomplete dictionaries and optimized projections Citation
Light field photography has gained a significant research interest in the last two decades; today, commercial light field cameras are widely available. Nevertheless, most existing acquisition approaches either multiplex a low-resolution light field into a single 2D sensor image or require multiple photographs to be taken for acquiring a high-resolution light field. We propose a compressive ligh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006